7.1: Functions of Several Variables

When you finish your homework you should be able to...

- π Define functions of two or more variables
- π Find the domain of a function with two or more variables
- π Applications
 - Find a company's cost function
 - o Evaluate a Cobb-Douglas function
 - General Applications

Up to this point, we have been mostly working with <u>functions</u> in one quantities, such as windchill and cost of a <u>car</u> <u>loan</u>. What variables do you think windchill utilizes?

- 1. <u>temperature</u> 2. <u>wind</u> <u>speed</u>

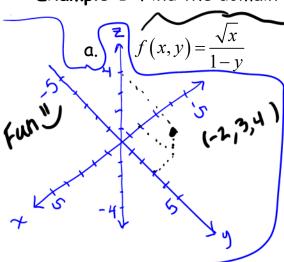
How about car loans?

- 1. <u>interest</u> rate 2. <u>term</u> <u>length</u>
- 3. principal

FUNCTION OF TWO VARIABLES

A function f of _____ variables is a rule such that to each ordered pair _____ in the _____ domain____ of f there _____ there ____ one and only one number _____ f(x,y)____.

Example 1: Find the domain of the function.



He function. $y \neq 1$ $y \neq 1$ $x \geq 0$ $y \neq 1$ $x \geq 0$ $y \neq 1$ $y \neq 1$

b. $f(x,y) = \frac{x}{\ln y}$

 $\begin{array}{c} y > 0 \text{ and } y \neq 0 \\ \Rightarrow 0 \\ \times \in \mathbb{R} \end{array}$

 $\begin{array}{c}
5 \\
5 \\
0 \\
-5 \\
10
\end{array}$

{(x,y): x,y∈R,y>0,y≠1}

c.
$$f(x,y,z) = \frac{e^{1/y} \ln x}{z}$$

 $\{(x,y,z): x,y,z \in \mathbb{R}, x>0, y\neq 0, z\neq 0\}$

Example 2: Evaluate the function at the given ordered pair of ordered triple.

a.
$$f(\mathbf{x}, \mathbf{y}) = \mathbf{x}e^{\mathbf{y}} + \mathbf{y}e^{\mathbf{x}}$$
, find $f(\mathbf{-1}, \mathbf{1})$

$$f(-1,1) = -\frac{1}{e}$$

So
$$(-1,1,\frac{-e^2+1}{e})$$
 is a point on the graph of f .

b.
$$g(x,y) = \ln(x^3 - y^2)$$
, find $g(e,0)$

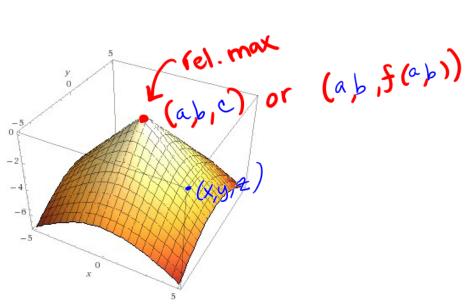
$$g(e,0) = \ln[(e)^{3} - (6)^{2}]$$

= $\ln e^{3}$
= 3

c.
$$f(x,y,z) = z\sqrt{x} \ln(y)$$
, find $f(4,e,-1)$

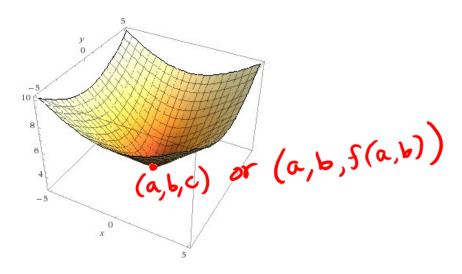
$$f(4,e,-1) = -2(1)$$

$$f(4,e,-1) = [-2]$$



RELATIVE MAXIMUM POINT

A point (a,b,c) on a surface (a,b,c) is a <u>relative</u> <u>maximum</u> point if $\underline{f(a,b)} \ge f(x,y)$ for all (x,y) in some region surrounding $\underline{(a,b)}$.



RELATIVE MINIMUM POINT

A point (a,b,c) on a surface (x,y) is a <u>relative minimum</u> point if $f(\alpha,b) \le f(x,y)$ for all (x,y) in some region surrounding (α,b) .

APPLICATIONS

Example 3: Finding a company's cost function.

A company manufactures surfboards and stand up paddleboards (SUPs). It costs \$60 to make each surfboard, \$80 to make each SUP, and fixed costs are \$1000.

a. Find the cost function.

$$x$$
 is the # of surfboards produced
$$y = \frac{1}{3} \cdot \frac{1}$$

b. Use the cost function to find the cost of producing 10 surfboards and 20 SUPs.

$$C(10,20) = 60(10) + 80(20) + 1000$$

$$C(10,20) = 3200 \text{ (dollars)}$$

Evaluating a Cobb-Douglas Production Function

A function used to model the	e output of a comp	any or nation is call	ed a
f	function, and the n	nost famous is the	
	production f	unction:	
The function expresses the		production as a	a function of
, the number of units of	, ar	nd, the numb	er of units of
Labor i	s measured in		_, and capital
means	capital.		
Example 4 : Evaluating a Cob	b-Douglas Product	ion Function.	
At one time, the production $P = P(L, K) = 2.39L^{0.76}K^{0.24}$. Fire		facturing was estim	lated to be

Example 5: Car Loan

Shannon is buying a 50^{th} Anniversary Edition Ford Mustang GT. She wants to have as low a payment as possible. She is offered two options. The first option is a loan amount of \$40,000 at 2.1% interest over 60 months. The second option has the same loan amount at 3.9% interest over 72 months. Which plan should she use? Why? Use the following function:

$$P = P(A, i, N) = \frac{iA}{1 - (1 + i)^{-N}}$$

where $\underline{\Gamma}$ represents principal, $\underline{\iota}$ represents interest, and $\underline{\underline{N}}$ is the number of payments.

A = payment amount