7.1: Functions of Several Variables

When you finish your homework you should be able to...
π Define functions of two or more variables
π Find the domain of a function with two or more variables
π Applications

- Find a company's cost function
- Evaluate a Cobb-Douglas function
- General Applications

Up to this point, we have been mostly working with \qquad in one
\qquad
variable . In our world we deal situations which have related quantities, such as windchill and cost of a \qquad
\qquad What variables do you think windchill utilizes?

1. temperature
2.

How about car loans?
1.

2.

3. principal

FUNCTION OF TWO VARIABLES
A function f of $\quad 2$ variables is a rule such that to each ordered pair (x, y) in the \qquad domain of f there \qquad corresponds one and only one number \qquad $f(x, y)$.

Example 1: Find the domain of the function.

$(-\infty, 1) \cup(1, \infty)$
$1-y \neq 0$ $<\begin{aligned} & y \neq 1\end{aligned}$

b. $\quad f(x, y)=\frac{x}{\ln y}$

c. $\quad f(x, y, z)=\frac{e^{1 / y} \ln x}{z}$

$$
\begin{aligned}
& x>0 \\
& y \neq 0 \\
& z \neq 0
\end{aligned}
$$

$$
\{(x, y, z): x, y, z \in \mathbb{R}, x>0, y \neq 0, z \neq 0\}
$$

Example 2: Evaluate the function at the given ordered pair of ordered triple.
a. $\quad f(\bar{x}, y)=x e^{y}+y e^{x}$, find $f(-1,1)$

$$
\begin{aligned}
& f(-1,1)=(-1) e^{1}+1 e^{-1} x^{1} y \\
& f(-1,1)=-\frac{e}{e}+\frac{1}{e} \\
& f(-1,1)=\frac{-e^{2}+1}{e}
\end{aligned}
$$

So $\left(-1,1, \frac{-e^{2}+1}{e}\right)$ is a point on the graph of f.
b. $\quad g(x, y)=\ln \left(x^{3}-y^{2}\right)$, find $g(e, 0)$

$$
\begin{aligned}
g(e, 0) & =\ln \left[(e)^{3}-(0)^{2}\right] \\
& =\ln e^{3} \\
& =3
\end{aligned}
$$

$$
\ln e^{3}=3 \ln e
$$

So $(e, 0,3)$ is a point on the graph of g.
c. $\quad f(x, y, z)=z \sqrt{x} \ln (y)$, find $f(4, e,-1)$

$$
\begin{aligned}
f(4, e,-1) & =(-1) \sqrt{4} \ln e \\
f(4, e,-1) & =-2(1) \\
f(4, e,-1) & =-2
\end{aligned}
$$

So $(4, e,-1,-2)$ is a point on the graph of f.

RELATIVE MAXIMUM POINT
$(\bar{a}, b, c) \quad z=f(x, y)$
A point $\left\{R 4, Q, D_{1}\right.$) on a surface $\left.f^{2} 4,2,21\right)$ is a relative maximum point if _f(a,b) $2 f(x, y)$ for all (x, y) in some region surrounding $\quad(a, b)$.

RELATIVE MINIMUM POINT
$(a, b, c) \quad z=f(x, y)$
A point $\left(Q_{4}, e,-\infty\right)$ on a surface \quad relative minimum
point if $f(a, b) \leq f(x, y)$ for all (x, y) in some region surrounding ($a, b)$

APPLICATIONS

Example 3: Finding a company's cost function.
A company manufactures surfboards and stand up paddleboards (SUPs). It costs $\$ 60$ to make each surfboard, $\$ 80$ to make each SUP, and fixed costs are $\$ 1000$.
a. Find the cost function.
χ is the \# of surfboards produced
$g "$ "" Sups

$$
C(x, y)=60 x+80 y+1000
$$

b. Use the cost function to find the cost of producing 10 surfboards and 20 SUPs.

$$
\begin{aligned}
& C(10,20)=60(10)+80(20)+1000 \\
& C(10,20)=3200 \text { (dollars) }
\end{aligned}
$$

Evaluating a Cobb-Douglas Production Function

A function used to model the output of a company or nation is called a function, and the most famous is the production function:

The function expresses the \qquad production \qquad as a function of
\qquad , the number of units of \qquad , and \qquad the number of units of
\qquad . Labor is measured in \qquad , and capital
means \qquad capital.

Example 4: Evaluating a Cobb-Douglas Production Function.
At one time, the production of American manufacturing was estimated to be $P=P(L, K)=2.39 L^{0.76} K^{0.24}$. Find $P(2500,450)$.

Example 5: Car Loan

Shannon is buying a $50^{\text {th }}$ Anniversary Edition Ford Mustang GT. She wants to have as low a payment as possible. She is offered two options. The first option is a loan amount of $\$ 40,000$ at 2.1% interest over 60 months. The second option has the same loan amount at 3.9% interest over 72 months. Which plan should she use? Why? Use the following function:
$P=P(A, i, N)=\frac{i A}{1-(1+i)^{-N}}$
where $\underset{P}{ }$ represents principal, $i \quad$ represents interest, and N is the number of payments.

$$
A=\text { payment amount }
$$

